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Abstract. We consider the problem of estimating the uncertainty in large-scale linear statistical
inverse problems with high-dimensional parameter spaces within the framework of Bayesian inference.
When the noise and prior probability densities are Gaussian, the solution to the inverse problem
is also Gaussian, and is thus characterized by the mean and covariance matrix of the posterior
probability density. Unfortunately, explicitly computing the posterior covariance matrix requires as
many forward solutions as there are parameters, and is thus prohibitive when the forward problem is
expensive and the parameter dimension is large. However, for many ill-posed inverse problems, the
Hessian matrix of the data misfit term has a spectrum that collapses rapidly to zero. We present a
fast method for computation of an approximation to the posterior covariance that exploits the low-
rank structure of the preconditioned (by the prior covariance) Hessian of the data misfit. Analysis
of an infinite-dimensional model convection-diffusion problem, and numerical experiments on large-
scale 3D convection-diffusion inverse problems with up to 1.5 million parameters, demonstrate that
the number of forward PDE solves required for an accurate low-rank approximation is independent
of the problem dimension. This permits scalable estimation of the uncertainty in large-scale ill-posed
linear inverse problems at a small multiple (independent of the problem dimension) of the cost of
solving the forward problem.
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fields (such as initial conditions, heterogeneous coefficients, boundary conditions, and
sources) from limited and noisy observations. Ill-posedness in such problems leads to
uncertainty in the reconstructed parameter fields. Our lack of knowledge can result
from noisy measurements, sparse sensors, uncertain forward models, and uncertain
prior parameter information. The deterministic approach to inverse problem, which
amounts to minimizing a regularized data misfit function, does not account for uncer-
tainties in the solution of the inverse problem. Bayesian inference, on the other hand,
provides a systematic framework for incorporating uncertainties in observations, for-
ward models, and prior knowledge to quantify uncertainties in the parameters [22,26].
However, Bayesian solution of the statistical inverse problem for expensive forward
models and for large numbers of parameters (as occurs when spatially-varying fields
are discretized) is essentially intractable using conventional sampling techniques.

Here we consider the case of a linear ill-posed inverse problem within the frame-
work of Bayesian inference. The relevant background is summarized in §2. For this
class of problem, an additive Gaussian noise model and a Gaussian prior density on
the model parameters will result in a Gaussian posterior density for the model param-
eters. Thus, the statistical solution of the inverse problem, i.e. the posterior density,
can be completely described by its mean and covariance matrix. The mean is given
by maximizing the posterior density, which leads to a linear least squares optimiza-
tion problem whose structure is identical to that of a properly weighted deterministic
inverse problem. Thus, state-of-the-art numerical algorithms from large-scale deter-
ministic inverse problems can be exploited to find the mean [2, 8, 11, 20, 21]. On the
other hand, the posterior covariance matrix Γpost is given by the inverse of the Hessian
matrix of this least squares function. Due to the high-dimensionality of the parame-
ter space and expense of solving the underlying forward and adjoint PDEs needed to
construct the Hessian, direct computation of Γpost is usually intractable. Moreover,
the explicit inverse of the Hessian is not required for deterministic inversion, and thus
one cannot appeal to deterministic techniques for directly computing Γpost.

The goal of this paper is to present and analyze a fast method for accurate
estimation of the posterior covariance matrix Γpost by exploiting the structure of the
Hessian. On the other hand, we will not discuss computation of the mean, since as
mentioned above and expressed by (1), the mean is found by solving an appropriately-
weighted deterministic linear inverse problem. In particular, we refer the reader to [1],
which discusses fast multilevel solvers for the deterministic solution of the convection-
diffusion inverse problem presented in §4 and §5, which is equivalent to the mean.

Under the Gaussian conditions described above, the Hessian has two compo-
nents, one stemming from the weighted data misfit, and one from the prior infor-
mation on the parameters. The posterior covariance can then be written as Γpost =(
ATΓ−1

noiseA + Γ−1
prior

)−1

, where Γprior is the prior covariance matrix, Γnoise is the
noise covariance matrix, and A is the parameter-to-observable map, which involves
the inverse of the forward operator, and is therefore usually dense. As will be illus-
trated in §5, explicit computation of A requires as many forward PDE solves as there
are parameters. Thus, for high-dimensional parameter spaces and expensive-to-solve
PDEs, computing Γpost by construction and inversion of the Hessian is prohibitive.
Motivated by this difficulty, a common approach for solving high-dimensional statis-
tical inverse problems (particularly in the nonlinear setting) is to construct a low-
dimensional basis for the parameter space by invoking a low rank approximation of
Γ−1

prior. This is typically known as the Karhunen–Loève expansion. The hope is that
a basis constructed from the prior is then a good basis for the posterior, i.e. that the
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data not be in conflict with the prior. If this is not the case, i.e. if the observational
data are informative about the parameters in a way not anticipated by the prior, such
a basis may yield a poor approximation of the posterior.

On the other hand, our interest is in overcoming the intractability of computing
the posterior mentioned above by direct approximation of Γpost with bounds on the
accuracy of the approximation. The path to this end is to recognize that, for many
ill-posed inverse problems, the spectrum of ATΓ−1

noiseA (the data misfit portion of
the Hessian) decays rapidly, reflecting the fact that the data provide information on
only a low-dimensional subspace of the parameter field. One would like to employ
a low-rank approximation of this operator (e.g., via a Lanczos method) to overcome
the prohibitive nature of direct computation of Γpost. However, the retained modes
should be informed by not only the data, but also the prior information, since modes
that can be inferred from the data might be nullified by the influence of the prior.
Therefore, we rearrange the expression for Γpost to include the effects of the prior in
the data misfit term, thereby filtering the data through the prior before invoking the
low-rank approximation.

We argue in subsequent sections that for many ill-posed inverse problems, an ac-
curate low-rank spectral approximation of the “prior-preconditioned Hessian of the
data misfit,” Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior can be computed at a cost that is a small mul-

tiple (independent of the parameter dimension) of the cost of solving the underlying
forward PDEs. Once the low-rank approximation has been made, we can compute
desired quantities from the approximate posterior at a cost that depends only linearly
on problem dimension. These features result in a scalable method for estimating
uncertainty in large-scale linear statistical inverse problems.

In the remainder of this section, we review pertinent literature and describe the
differences with our approach and the contributions of this paper. Much of the prior
work for low-rank approximations in inverse problems has occurred in the context
of seismic inverse problems, where the forward operators can be expensive, and the
heterogeneity of the earth requires a high-dimensional parametrization. When the
forward problem is sufficiently inexpensive to solve, one can explicitly construct the
Hessian matrix (at a cost of n forward problem solutions, where n is the number
of model parameters) and invert it to obtain the posterior covariance matrix. For
example, as early as 1993, [28] were able to explicitly compute the posterior covari-
ance in the Bayesian framework for a global seismic tomography problem using ray
tracing as the forward model for up to 12,496 model parameters. Similarly, when
the parametrization is low-dimensional, one can tractably construct and invert the
Hessian matrix to find the posterior covariance. For example, [16] and [17] obtain
Bayesian solutions to flat-layered earth seismic inverse problems with up to 300 pa-
rameters. Such explicit construction of the Hessian does not scale as the number of
parameters, or the complexity of the forward problem, increase. On the other hand,
a number of references invoke low-rank approximations to make inversion tractable
for large-scale problems. Examples include [9, 10, 12, 15, 23, 24, 25, 27, 30, 31, 32], in
which the low rank approximations are effected through truncated iterative methods
such as Lanczos and block Lanczos, conjugate gradients, and LSQR. In all of these
cases, however, the Bayesian framework is not employed, and instead the goal is to
determine the so-called resolution matrix A†A [4], which is a deterministic attempt
to quantify resolving power of the inversion.

Our approach differs from previous work in the following ways:
• We adopt the full Bayesian statistical framework to estimate uncertainties
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in solution of inverse problems, thus permitting a broader interpretation of
the regularization as a model prior; importantly, our low-rank approximation
addresses both data misfit and model prior terms, which leads to a systematic
method to choose how to truncate the low-rank approximation (see §3).

• Our method address very large-scale inverse problems for which both the for-
ward problem and the model parametrization are large-scale. For example, we
apply the method to a 3D implicitly-solved convection-diffusion atmospheric
transport inverse problem posed on a complex geometry domain with finite
element-based discretization of the initial condition with up to 1.5 million
inversion parameters (see §5).

• For the 3D inverse convection-diffusion problem, we provide a systematic
investigation of the effects of truncation of the low-rank estimate on the ac-
curacy of the posterior, and we assess the scalability of the method with
increasing parameter dimension, demonstrating that the number of forward
PDE solves required by an accurate low-rank-based approximation is inde-
pendent of the problem dimension (see §5). We also provide an analysis of the
spectrum of the Hessian of a 1D model convection-diffusion inverse problem,
the results of which support the numerical experiments (see §4).

We begin with an introduction to the Bayesian framework in §2. Next, in §3, we
describe the low-rank algorithm for approximating the posterior covariance matrix.
§4 introduces the specific inverse problem that is the subject of our numerical ex-
periments: inversion for the initial concentration field of an atmospheric contaminant
governed by a 3D convection-diffusion PDE in a model city geometry, based on sensor
observations. This sections also assesses the efficacy of the low-rank approach through
spectral analysis of a 1D model problem. We study the performance of this algorithm
in §5 for large-scale instances of the 3D convection-diffusion inverse problem. We
investigate the structure of the spectrum of the prior-preconditioned Hessian of the
data misfit in §5.1 and its dependence on physical and experimental parameters in
§5.2. In §5.3 –5.4, we provide interpretation and error analysis of the approximated
variance. Finally, §5.5 demonstrates the scalability of the low-rank algorithm as a
function of the number of parameters.

2. Bayesian framework for statistical inverse problems. In this section,
we present the Bayesian framework for statistical inverse problems beginning with
the general case of Bayes’ theorem and continuing with the special case of a linear
forward model and Gaussian noise and prior uncertainties. The resulting posterior
probability density will be Gaussian, with mean given by the solution of a particular
least squares inverse problem, and the covariance given by the inverse of the Hessian
matrix of the least squares function. Our focus here is on inverse problems that are
governed by large-scale forward models, as result from appropriate discretizations of
PDEs. Unfortunately, for large-scale statistical inverse problems (as exemplified by
the inverse convection-diffusion problem we target here), a straightforward compu-
tation of this covariance matrix is entirely prohibitive. Hence, in §3, we present a
fast method for estimating the covariance based on a low rank spectral estimate that
approximates the structure of the Hessian.

2.1. General formulation. Non-uniqueness is a central feature of ill-posed in-
verse problems: multiple values of the parameters may be consistent with the ob-
servations. The least-squares minimization approach to ill-posed inverse problems
invokes a so-called regularization terms to effectively select among the multiple pa-
rameter values the one that has largest regularity (in an appropriate norm), resulting
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in a single—deterministic—estimate of the unknown parameters (see, e.g., [29]). A
Bayesian estimate of the unknown, on the other hand, is a probability density that
suggests the credibility of any given point estimate (see, e.g., [22,26]). In the Bayesian
approach, we view all parameters as random variables and write the parameter-to-
observable map g : Rn × Rk → Rm as

Y = g(X,E),

where X, Y , and E are random variables. The variable x ∈ Rn is a realization of
the random variable X and the vector of model parameters to be recovered, e ∈ Rk
is a realization of the random variable E and the vector of errors (due to both model
errors and observation noise), and y ∈ Rm is the realization of random variable Y
and vector of observables with yobs the actual observation values. We choose the
following probability density functions (pdf’s): the probability density πnoise : Rk →
R, which describes the modeling error and observation noise; the prior probability
density πprior : Rn → R, which describes additional information about the parameters
X; and the likelihood function π(y|x), which describes the relationship between the
observables y and the unknown model parameters x.

From Bayes’ theorem, the prior probability density, the likelihood function, and
the data can be combined to form the posterior probability density πpost : Rn → R
on the model parameters X:

πpost(x) := π(x|yobs)

=
πprior(x)π(yobs|x)

π(yobs)
∝ πprior(x)π(yobs|x).

To generate the likelihood function, we use the pdf πnoise(e). Here we will assume
additive noise, so that the parameter-to-observable map is

Y = f(X) + E,

where f : Rn → Rm and the noise E ∈ Rm reflects both the modeling error of f and
observation noise. Thus E = Y − f(X). We assume that X and E are statistically
independent (see e.g., [22, p.56], for generalizations). Therefore,

πnoise(e) = πnoise(yobs − f(x)),

so that Bayes’ theorem states

πpost(x) ∝ πprior(x)πnoise(yobs − f(x)).

2.2. Gaussian linear case. In the case that the prior probability density of X
and the probability density of error E are both Gaussian, further simplifications can
be made. The prior and noise pdf’s can be written in the form

πprior(x) ∝ exp
(
−1

2
(x− x̄prior)TΓ−1

prior(x− x̄prior)
)
,

πnoise(e) ∝ exp
(
−1

2
(e− ē)TΓ−1

noise(e− ē)
)
,



6 FLATH, WILCOX, AKÇELIK, HILL, VAN BLOEMEN WAANDERS, GHATTAS

where x̄prior ∈ Rn is the mean of the model parameter prior pdf, ē ∈ Rm is the
mean of the noise pdf, Γprior ∈ Rn×n is the covariance matrix of the prior pdf, and
Γnoise ∈ Rm×m is the covariance matrix of the noise pdf. Restating Bayes’ theorem
with these Gaussian uncertainties, we find that

πpost(x) ∝ exp
(
−1

2
‖x− x̄prior‖2Γ−1

prior
− 1

2
‖yobs − f(x)− ē‖2

Γ−1
noise

)
.

As is clear from this expression, despite the choice of prior and noise probability
densities as Gaussian, the posterior probability density need not be Gaussian, due to
the nonlinearity of f(x).

Let us now assume that the parameter-to-observable map is linear, i.e.

f(X) = AX.

Here, A ∈ Rm×n is the linear operator that maps parameters x to observables y, via
the solution of a large-scale discretized PDE problem. In this case, πpost(x) is also
Gaussian, with mean x̄post ∈ Rn given by the maximum a posteriori (MAP) point,
i.e.,

x̄post = arg max
x

πpost(x).

Finding the MAP point is equivalent to solving a weighted least squares optimization
problem, i.e.,

x̄post = arg min
x

(
1
2
‖yobs −Ax− ē‖2

Γ−1
noise

+
1
2
‖x− x̄prior‖2Γ−1

prior

)
, (1)

which is equivalent to solving a regularized deterministic inverse problem, where Γ−1
prior

plays the role of the regularization operator, and Γ−1
noise is a weighting of the data

misfit term. Moreover, the covariance matrix of the posterior pdf of model parameters,
Γpost ∈ Rn×n, is given simply by the inverse of the Hessian matrix of the least squares
objective function, i.e.,

Γpost =
(
ATΓ−1

noiseA + Γ−1
prior

)−1

. (2)

So, in summary,

πpost(x) = N (x̄post,Γpost).

3. Low-rank approximation. While the mean of the posterior density of the
parameters can be found readily by solving (1) using state-of-the-art techniques from
large-scale PDE-constrained optimization (see e.g. the review in [2] or the edited vol-
ume [11]), computing the posterior covariance matrix of the parameters presents a
challenge. Although it is easy to write an expression such as (2), explicit construc-
tion of the Hessian (let alone its inverse), which is dense and of order of the number
of parameters, would require at least as many forward solves as the number of pa-
rameters to compute the parameter-to-observable map A. This is prohibitive for
high-dimensional parameter spaces, as arise when an infinite-dimensional parameter
field is discretized. Moreover, for large-scale problems we often cannot store the entire
posterior covariance matrix, and instead must resort to extracting partial information
(such as its action on a vector or the variance).
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Instead, we take advantage of the structure of the Hessian. We begin by rec-
ognizing that, for many ill-posed inverse problems, the Hessian of the data misfit,
Hmisfit ∈ Rn×n, where

Hmisfit
def= ATΓ−1

noiseA,

behaves like the discretization of a compact operator (see, e.g., [29, p.17]). The range
space thus is effectively finite-dimensional, and the eigenvalues decay, often rapidly,
to zero. We can exploit this structure to construct fast algorithms for approximating
the inverse of the Hessian. Rearranging the expression for Γpost in (2) to factor out
Γ1/2

prior gives

Γpost =
(
ATΓ−1

noiseA + Γ−1
prior

)−1

= Γ1/2
prior

(
Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior + I

)−1

Γ1/2
prior. (3)

Fast computations using this expression for Γpost require two operations: fast multi-
plication by Γ1/2

prior and fast inversion of Γ1/2
priorA

TΓ−1
noiseAΓ1/2

prior +I. We do not address

fast multiplication by Γ1/2
prior in this paper, since it depends on the structure of the

chosen prior. Here we address the latter operation.
Let λi and vi be the eigenvalues and eigenvectors of the prior-preconditioned

Hessian of the data misfit H̃misfit ∈ Rn×n, where

H̃misfit
def= Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior.

Let Λ ∈ Rn×n be the diagonal matrix of eigenvalues λi of H̃misfit and let V ∈ Rn×n
be the matrix whose columns are the eigenvectors vi of H̃misfit. Then the following
expression can be rewritten with H̃misfit replaced by its spectral decomposition:(

Γ1/2
priorA

TΓ−1
noiseAΓ1/2

prior + I
)−1

= (V ΛV T + I)−1.

When the eigenvalues of H̃misfit decay rapidly, we can extract a low-rank approxima-
tion of H̃misfit by retaining only the r largest eigenvalues and corresponding eigen-
vectors,

Γ1/2
priorA

TΓ−1
noiseAΓ1/2

prior ≈ V rΛrV
T
r .

Then we can invert using the Sherman-Morrison-Woodbury formula to obtain

(
Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior + I

)−1

= I − V rDrV
T
r +O

(
n∑

i=r+1

λi
λi + 1

)
, (4)

where Λr ∈ Rr×r and V r ∈ Rn×r denote the truncated eigenvalue and eigenvector
matrices, and Dr

def= diag(λi/(λi + 1)) where Dr ∈ Rr×r. With this low-rank ap-
proximation, the final expression for approximation of the posterior covariance Γpost

is therefore given by

Γpost ≈ Γprior − Γ1/2
priorV rDrV

T
r Γ1/2

prior. (5)
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Algorithm 1 Algorithm for estimating the posterior covariance matrix Γpost using
low-rank partial Hessian approximations.

1: Compute dominant eigenvalues and eigenvectors of the prior-preconditioned Hes-
sian of the data misfit H̃misfit

def= Γ1/2
priorA

TΓ−1
noiseAΓ1/2

prior, truncating at λi ≥ λmin

and using a matrix free method such as Lanczos.
2: Store retained eigenvalues as the diagonal matrix Dr

def= diag(λi/(λi + 1)) and
the corresponding eigenvectors as the matrix V r.

3: Compute desired posterior covariance quantities (e.g., variance, actions on a vec-
tor, etc.) through appropriate vector manipulations of the expression

Γpost ≈ Γ1/2
prior

(
I − V rDrV

T
r

)
Γ1/2

prior

Note that (5) expresses the posterior uncertainty (in the form of a covariance matrix)
as the prior uncertainty, less any information gained from the data, filtered through
the prior. The overall algorithm for approximation of the posterior covariance matrix
is then given in Algorithm 1.

For many ill-posed inverse problems, the choice of r is small and independent
of problem size. The r retained eigenvectors can be viewed as the modes of the
parameter field that are recoverable from a combination of data and prior information.
It is often the case for ill-posed inverse problems that the spectrum of the prior-
preconditioned Hessian of the data misfit H̃misfit collapses on zero. This happens
for example when the data misfit Hessian Hmisfit has rapidly decaying eigenvalues
whose decay is not reversed through preconditioning by Γ1/2

prior, or may result when a
smoothing prior introduces or reinforces spectral decay in H̃misfit. In such cases, an
accurate approximation of H̃misfit can be made with small values of r. In fact, often
the data and prior are informative about the low-wavenumber modes of the parameter
field; this is because local features cannot be resolved from the data, and the prior is
of smoothing type. Thus, refinements of the mesh on which the PDE is solved do not
affect the accuracy of the low-rank approximation, and as a result, an appropriate
choice of r is independent of mesh size. Note that expression (4) suggests a cutoff
value for retaining eigenpairs in the low-rank approximation of H̃misfit, namely that
λ� 1 (in most of our examples, we use λ > 0.1 as a cutoff criterion).

The Frobenius norm of the error in the approximation of H̃misfit is

∥∥∥H̃misfit − V rΛrV
T
r

∥∥∥
F

=

√√√√ n∑
j=r+1

λ2
j , (6)

since the first r eigenvalues of H̃misfit are exactly represented in the low-rank ap-
proximation. If the eigenvalues λj decay rapidly enough for the series

∑∞
j=r+1 λ

2
j

to converge, then provided the structure of the spectrum does not change as the di-
mension of the parameter space increases, we obtain an error bound on the low-rank
approximation of H̃misfit that is independent of the dimension of the parameter space
(and therefore mesh size). Similarly, the error in the low-rank approximation of (4)
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Calculation cost for general Γprior cost for Γprior ∝ I
variance: diag(Γpost) (3r + 1)n+ rγ (3r + 1)n
row/column: Γpostej 4rn+ γ 2rn+ r + 1
multiplication: Γpostv 4rn+ 2γ (4r + 1)n
sample: exp(vT Γpostv) (4r + 2)n+ 2γ (4r + 3)n

Table 1
Cost of common computations using Γpost once eigenvectors of H̃misfit, the prior-preconditioned

Hessian of the data misfit, have been computed, where n is the dimension of x, r is the dimension

of the low-rank approximation of H̃misfit, and γ is the cost of multiplying Γ
1/2
prior by a vector. The

last column corresponds to the case of an i.i.d. prior.

is given by

∥∥∥∥(H̃misfit + I
)−1

−
(
I − V rDrV

T
r

)∥∥∥∥
F

=

√√√√ n∑
j=r+1

(
λj

λj + 1

)2

<

√√√√ n∑
j=r+1

λ2
j , (7)

and thus is also bounded independent of problem dimension, and is in fact less than
the approximation error for H̃misfit. Finally, to relate the effect of the low-rank
approximation of H̃misfit on the posterior covariance Γpost, one would need to know
the spectral structure of the prior covariance Γprior, as is evident from (3). In §4 and
§5, we provide analytical and numerical evidence of the legitimacy of this low-rank
approximation and its effect on the computed spectra of H̃misfit and the posterior
covariance estimate for a statistical inverse problem involving a convection-diffusion
PDE.

We are now in a position to state the complexity of the low-rank approximation
and the resulting cost of evaluating Γpost. We certainly cannot explicitly construct
H̃misfit and then perform a truncated SVD. Instead, we chose a matrix-free Lanczos
method to find its dominant eigenvalues and corresponding eigenvectors. Lanczos
requires only a matrix-vector product with H̃misfit at each iteration, which in turn
requires (a) multiplications with Γ1/2

prior, and (b) actions of A and AT on vectors.
The latter involve forward and adjoint PDE solutions, which dominate the cost when
the forward model is large-scale. Lanczos tends to require a number of iterations
proportional to the dominant portion of the spectrum, which is bounded when H̃misfit

is compact. Thus, under the conditions discussed above, the cost (in number of
forward/adjoint PDE model solutions) of the low-rank approximation is small and
independent of the mesh size. Once the r dominant eigenpairs have been found,
storing the low-rank approximation requires (r + 1)n floating point numbers, where
n is the dimension of the parameter space. In §4 and §5 we illustrate the relationship
between accuracy and size of r and provide evidence of mesh independence for a large-
scale statistical inverse problem governed by a three-dimensional convection-diffusion
PDE model.

Once the low-rank approximation has been constructed, the remaining costs to
probe the posterior parameter density are linear in n. The costs are summarized in
Table 1.

4. A 3D convection-diffusion inverse problem. We now introduce a large-
scale statistical inverse problem governed by three-dimensional convective-diffusive
contaminant transport. The inverse problem seeks to find the initial concentration
field of the contaminant and associated uncertainty, given noisy measurements of
contaminant concentration at certain spatio-temporal locations or at final time, prior
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information on the initial contaminant, and the PDE model of the transport of the
contaminant. In this section we also present analysis of a related one-dimensional
convection-diffusion inverse problem to provide insight into the numerical experiments
on the 3D inverse problem in §5.

4.1. Problem description. The forward problem is a discretization of a con-
vection-diffusion PDE describing the evolution of the contaminant:

ut − k4u+ v · ∇u = 0, Ω× (0, T ),
u = u0, Ω× {t = 0}, (8)

k∇u · n = 0, ∂ΩN × (0, T ),
u = 0, ∂ΩD × (0, T ),

where u is the contaminant concentration, u0 is the initial contaminant concentration
field, v is the known wind velocity, k is the known diffusion coefficient, and T is the
final time. Thus, the initial concentration u0 represents the unknown parameter x
and the sensor observations of concentration are the data yobs. Figure 1 describes the
domain, boundary conditions, and velocity field for our example problem.

The code for statistical inversion extends an earlier code for the deterministic
inverse problem [1, 3]. The discretization of the forward problem (8) uses a stan-
dard finite element approximation stabilized with SUPG (Streamline Upwind Petrov-
Galerkin) to permit higher Peclet numbers. It uses linear tetrahedral elements and
a uniform grid. Timestepping is implemented with Crank-Nicolson. Eigenvalues
and eigenvectors are computed with Lanczos with periodic reorthogonalization [18].
PETSc [5, 6, 7] and SLEPc [19] are used throughout to enable parallelization.

As described in §2.2, the Bayesian formulation of a linear statistical inverse prob-
lem with Gaussian noise and prior is related to an appropriately-weighted least squares
minimization problem. We choose to define our noise and prior pdf’s by discretizing
the infinite-dimensional functional

min
u0

(
βnoise

2

∫
Ω

∫ T

0

(u− uobs)2b(x, t) dx dt+
βprior

2

∫
Ω

u2
0 dx

)
, (9)

in which u(x) satisfies the convection-diffusion equation (8). We study two alternatives
for the observation operator b(x, t). For the sparse observation case, measurements
are taken at distinct points xj , j = 0, . . . ,m− 1, over a time interval 0 ≤ t ≤ T . For
the final time observation case, measurements are taken over the entire domain at
final time t = T . The two observation operators are defined by

b(x, t) =
{ ∑

j δ(x− xj) sparse observations,
δ(t− T ) final time observations.

Discretization of expression (9) is equivalent to the choice of Gaussians pdf’s for the
prior and noise,

πprior(u0) = N (ū0,prior,Γprior),
πnoise(e) = N (ē,Γnoise),

with prior mean ū0,prior = 0 and noise mean ē = 0, and prior and noise covariances
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(a) (b)

(c) (d)

Fig. 1. Time evolution of an atmospheric contaminant (deep blue) as it is transported through
a model city composed of 10 buildings. The arrows represent wind velocity, and their size and
color represent velocity magnitude. The mesh contains 112× 112× 112 hexahedra, each of which is
further subdivided into 6 tetrahedral elements. The velocity field was generated by solving the steady
Navier-Stokes equations with a parabolic velocity inflow (from 0 to a maximum velocity of vmax = 1),
no-normal flow on the sides and top, traction-free outflow, and no-slip on the buildings and bottom.
Additional parameters include density ρ = 1 and viscosity µ = 1. The maximum velocity within the
domain for the chosen parameters is 2.78. Contaminant boundary conditions are zero concentration
on the inflow, ground, and buildings; and zero flux on the sides, outflow and top. The images depict
snapshots of the contaminant concentration as well as flow field at the following times: (a) T = 0.
(b) T = 4. (c) T = 8. (d) T = 12.

given by

Γprior =
h3

βprior
I,

Γnoise =
{

(h3/βnoise)I final time observations,
(1/βnoise)I sparse sensor observations,

where βprior and βnoise are weighting factors and h is the mesh size. Other choices of
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covariance matrices are certainly possible.1

Discretization of the infinite-dimensional least squares minimization problem (9)
results in the following expression for the posterior mean (1),

ū0,post = arg min
u0

(
1
2

(u− uobs)TBTΓ−1
noiseB(u− uobs) +

1
2
uT0 Γ−1

prioru0

)
where B is a discretization of b(x, t), and the discretized contaminant field u satisfies
Ku = Cu0, which is the discretization of the forward convection-diffusion problem
(8). Here, K is the discretized convection-diffusion operator, and C is the operator
that maps initial conditions to space-time. Solving this equation for u given u0, we
can rewrite the optimization problem in terms of u0,

ū0,post = arg min
u0

(
1
2

(Au0 −Buobs)TΓ−1
noise(Au0 −Buobs) +

1
2
uT0 Γ−1

prioru0

)
,

where A = BK−1C is the parameter-to-observable map. The posterior covariance
matrix of the initial concentration field is given by the inverse of the Hessian of this
least squares function, which yields the expression (2) with A = BK−1C. Forming
the action of A on a given contaminant initial condition-like vector ũ0, as required
by the low-rank approximation algorithm of §3, involves lifting the initial condition
to space-time (z ← Cũ0), solution of the convection-diffusion problem for this source
(w ← K−1z), and extraction of the resulting contaminant concentrations at sensor
locations (q ← Bw). The action of the adjoint map AT on the resulting weighted
concentrations Γ−1

priorq, as also required in the low rank approximation, involve the
transpose of the operations described above and proceed in similar fashion.

4.2. Analysis of a model 1D convection-diffusion inverse problem. In
this section we examine the structure of an analogous 1D infinite-dimensional convec-
tion-diffusion inverse problem to assess the effectiveness of a low-rank approximation.
We describe the transport of a contaminant with the following convection-diffusion
initial-boundary value problem:

ut − k
∂2u

∂x2
+ v

∂u

∂x
= 0, (0, L)× (0, T ), (10)

u(x, 0) = u0(x), (0, L)× {t = 0},

k
∂u

∂x

∣∣∣∣
x=0

= k
∂u

∂x

∣∣∣∣
x=L

, (0, T ),

u|x=0 = u|x=L, (0, T ),

where the velocity v and diffusion coefficient k are taken as constant and the domain
is periodic on the interval (0, L). We assume the observation operator takes measure-
ments at final time T of the concentration over the entire domain (0, L). This model

1Rather than consider a number of cases with different kinds of priors (e.g. strongly smoothing,
weakly smoothing, weakly roughening, etc.), for convenience we have chosen a “spectrally neutral”
prior (i.e. having a scaled identity covariance matrix) and rely on the data misfit to provide the
appropriate spectral decay. With the common choice of a smoothing prior (indicating correlation
among parameters), one would have obtained an even faster decay of eigenvalues of H̃misfit, and
thus a low rank approximation with even fewer retained eigenvectors. So, the choice of a neutral
prior can be regarded as a lower bound on performance of the low rank approximation, at least in
the case where one expects some kind of correlation among parameters.
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problem is a one-dimensional version of (8), but with periodic boundary conditions
replacing the Dirichlet and Neumann conditions.

We wish to investigate the viability of a low-rank approximation of the data misfit
Hessian matrix corresponding to (9). For the finite-dimensional inverse problem,
the prior-preconditioned data misfit Hessian matrix H̃misfit = Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior

includes the influence of the prior and noise covariance matrices. As a surrogate for
this, we will analyze, and verify the rapid decay in, the spectrum of the infinite-
dimensional operator

H̃misfit(u0) def= −βnoise

βprior
p(x, 0) (11)

where βnoise/βprior represents the relative strength of the prior and the noise and
p is the solution to an adjoint PDE problem given by the terminal-boundary value
problem

−pt − k
∂2p

∂x2
− v ∂p

∂x
= 0, (0, L)× (0, T ), (12)

p(x, T ) = −u(x, T ), (0, L)× {t = T},

k
∂p

∂x

∣∣∣∣
x=0

= k
∂p

∂x

∣∣∣∣
x=L

, (0, T ),

p|x=0 = p|x=L , (0, T ).

The adjoint PDE problem (12) and the expression for the infinite-dimensional Hes-
sian operator (11) can be derived through standard Lagrangian techniques for PDE-
constrained optimization [20, 21] applied to the objective functional (9) and state
equation (10).

Provided that the (finite-dimensional) prior and noise covariance matrices do not
corrupt the rapid decay in the spectrum seen in H̃misfit, the low-rank approximation
should still be appropriate. As mentioned before, a smoothing prior often reinforces
this spectral decay. The expression for the eigenvalues of H̃misfit provides insight
into the choice of prior and noise covariances that makes the low-rank approximation
appropriate for a given statistical inverse problem. The choice of “spectrally neutral”
i.i.d. prior and noise covariance matrices as in the previous subsection implies that
the spectrum of H̃misfit should still decay rapidly.

We note that the eigenfunctions of H̃misfit are given by

e2πijx/L for j = 0,±1,±2, . . . , (13)

and the eigenvalues are given by

βnoise

βprior
e−8kTπ2j2/L2

for j = 0,±1,±2, . . . . (14)

These expressions can be verified as follows. The action of the operator H̃misfit in (11)
on the proposed initial condition eigenfunction u0(x) = e2πijx/L requires solution
of the forward problem (10), which yields the terminal condition for (12). One can
verify readily that the exact solution of (10) for this initial condition is given by the
expression

u(x, t) = e(−4π2j2k/L2−2πijv/L)te2πijx/L,



14 FLATH, WILCOX, AKÇELIK, HILL, VAN BLOEMEN WAANDERS, GHATTAS

which produces a terminal condition for (12) of

p(x, T ) = −u(x, T ) = −e(−4π2j2k/L2−2πijv/L)T e2πijx/L.

The corresponding solution of (12) is therefore

p(x, t) = −e−8π2j2kT/L2
e(4π2j2k/L2−2πijv/L)te2πijx/L.

The evaluation of (11) follows directly, and verifies the expressions (13)–(14).
Note that the eigenvalues decay exponentially, which invites a low-rank approx-

imation. The prior-preconditioned data misfit Hessian of the 3D inverse problem
discussed in the next section is expected to exhibit similar structure, despite the ef-
fects of discretization, different boundary conditions, and complex geometry (as will
be verified in the §5). Assuming the eigenvalues of H̃misfit decay according to the ex-
pression (14), for a given cutoff λ > α, the number of retained eigenvalues is therefore

r = 2jmax + 1 = 2

⌊√
L2

8kTπ2

∣∣∣∣log
(
αβprior

βnoise

)∣∣∣∣
⌋

+ 1,

where 0 < α < βnoise/βprior and jmax is the maximum value of j from (13) and
(14). The subsections of §5 investigate thoroughly the properties of H̃misfit for the
3D numerical example and support the analysis of the infinite-dimensional H̃misfit in
this subsection.

We are also interested in the effect of physical parameters on the spectrum of
H̃misfit and the corresponding eigenfunctions. As seen in (13), the eigenfunctions
of the operator H̃misfit are oscillatory, where large eigenvalues are associated with
smoother eigenfunctions and small eigenvalues are associated with increasingly oscil-
latory eigenfunctions. This is due to the effects of diffusion, which leads to greater
loss of information in more oscillatory eigenfunctions (which are components of the
initial concentration field), and therefore these eigenfunctions are harder to resolve
from later-time observations. This behavior is explored for the 3D problem in §5.1.

Increasing the diffusion coefficient k leads to faster decay of the spectrum of
H̃misfit, as seen in (14). Moreover, a larger final time T also increases the rate of
decay, since it allows more time for diffusion to act on components of the initial
concentration. In this 1D example, there is no dependence of the spectrum of H̃misfit

on the velocity v, since convection of the contaminant in the adjoint operator cancels
(the oppositely-signed) convection in the forward operator due to periodicity. In the
3D numerical example, effects of convection may be visible, since with a more complex
velocity field and non-periodic boundary conditions, convection does not cancel out
between forward and adjoint PDEs. Effects of the physical parameters k and T , as
well as additional experimental parameters, on the 3D numerical spectrum are further
explored in §5.2.

We next analyze the effect of the choice of truncation of the spectrum in the
low-rank approximation on the resulting error in the posterior covariance matrix. To
facilitate the analysis, we assume the eigenvalues of the finite-dimensional H̃misfit de-
cay according to the infinite-dimensional expression (14). A bound on the squared
error in the Frobenius norm (in both the approximation of H̃misfit and the approx-
imation of (H̃misfit + I)−1) in terms of r is derived by treating (6) and (7) as right
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Riemann sums (the factor of two is from the repeated eigenvalues). Thus,

2
n∑

j=jmax+1

λ2
j < 2

∞∑
j=jmax+1

λ2
j <

2β2
noise

β2
prior

∫ ∞
jmax

e−16kTπ2x2/L2
dx,

<
2β2

noise

β2
prior

√
L2

32kTπ
erfc

(
jmax

√
16kTπ2

L2

)
,

where the number of retained eigenvalues r = 2jmax +1 is greater than zero. Alterna-
tively, a bound in terms of the cutoff α (such that retained eigenvalues satisfy λ > α)

can be derived. Let R =
√

L2

8kTπ2

∣∣∣log
(
αβprior
βnoise

)∣∣∣, so that jmax = bRc. Then

2
n∑

j=jmax+1

λ2
j <

2β2
noise

β2
prior

∫ ∞
jmax

e−16kTπ2x2/L2
dx,

< 2

(
λ2
R +

β2
noise

β2
prior

∫ ∞
R

e−16kTπ2x2/L2
dx

)
,

= 2

(
λ2
R +

β2
noise

β2
prior

√
L2

32kTπ
erfc

(
R

√
16kTπ2

L2

))
,

= 2

(
α2 +

β2
noise

β2
prior

√
L2

32kTπ
erfc

(√
2
∣∣∣∣log

(
αβprior

βnoise

)∣∣∣∣
))

,

< 2

(
1 +

√
L2

32kTπ

)
α2,

where 0 < α < βnoise/βprior. This expression is independent of the dimension of the
parameter space, and therefore the number of retained eigenvalues in the low-rank
approximation need not increase to maintain accuracy as the number of parameters
increases. In §5.4 we present numerical experiments that examine the effect of the er-
ror due to truncation on the posterior variance for the 3D convection-diffusion inverse
problem.

5. Numerical experiments. We now study the behavior of the algorithm of
§3 for the 3D convection-diffusion inverse problem described in §4. We examine the
properties of the spectrum and eigenvectors of H̃misfit, and present experiments that
demonstrate the effect of number of sensors, diffusion coefficient, and final time on
the spectrum of H̃misfit. Additionally, we investigate properties of the variance of the
initial concentration and the effects of the truncation of the low-rank approximation
on the computed variance. Finally, we examine the computational work associated
with the low-rank approximation and demonstrate the scalability of the low-rank
algorithm.

5.1. Properties of the spectrum of H̃misfit and the posterior covariance.
In this section, we study the properties of eigenvalues and eigenvectors of H̃misfit and
the resulting posterior covariance matrix.

Figure 2(a) presents the spectrum for the case of final time observations. The
first 3500 eigenvalues of the spectrum of the H̃misfit are shown in the figure. As can
be seen, the eigenvalues rapidly collapse onto zero, and for this particular problem,
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1500 modes (out of 274,625) are sufficient to capture the non-trivial structure of
H̃misfit. The first 3500 eigenvalues of the posterior covariance matrix (based on a
3500-eigenpair low-rank approximation of H̃misfit) are displayed in Figure 2(b). The
asymptotic horizontal line of the curve reflects prior information, which in this case
is a scaled standard normal pdf. The information provided by observational data is
responsible for the departure from the horizontal line seen in this figure. As expressed
by (5), the eigenpairs of the prior covariance matrix that are modified by observational
data (i.e. the first 1500 or so) are precisely the dominant eigenpairs of H̃misfit (i.e.
the first 1500 or so eigenvalues in Figure 2(a)). The posterior pdf thus inherits its
uncertainty from the prior in those directions for which the data (filtered through
the prior) render no useful information (these are eigenvectors 1500 through 274,625).
The remaining directions—for which the data (filtered through the prior) do provide
useful information—serve to reduce the uncertainty in the posterior.
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Fig. 2. Spectra of H̃misfit and the posterior covariance estimate for the final time observation
case with final time T = 6, diffusion coefficient k = 0.5, βnoise/βprior = 100, and a 64 × 64 × 64

mesh. (a) Largest 3500 (out of 274,625) eigenvalues of H̃misfit. (b) Corresponding 3500 (out of
274,625) eigenvalues of the approximation of the posterior covariance Γpost.

Next, we discuss the spectra for the case of sparse observations with 51 sensors and
274,625 uncertain parameters. In Figure 3 we present the spectrum and isosurfaces
of selected eigenvectors of H̃misfit. Figure 3(a) depicts the largest 1800 eigenvalues of
H̃misfit, while Figure 3(b) shows the corresponding spectrum of the posterior covari-
ance matrix based on this low-rank approximation. Note that, like Figure 2(a), the
eigenvalues decay rapidly and are negligible beyond the 500th (out of 274,625). How-
ever, the eigenvalue curve for this sparse observation case is discontinuous, exhibiting
two visible jumps. The first jump occurs after the 51st eigenvalue, which is identical
to the number of sensors. Indeed, each of the first 51 eigenvalues is associated with a
unique sensor; this is illustrated by the 51st eigenvector shown in Figure 3(c), which
depicts an isosurface in the shape of a ball surrounding the associated sensor. After
the 51st eigenvalue, the associated eigenvectors change in shape by developing a large
oscillation upstream of the sensor. The second jump in the spectrum occurs after the
101st eigenvalue, where the associated eigenvectors add a second oscillation upstream
of the sensor. In §4.2, we noted that for a one-dimensional model problem with final-
time observations, eigenvectors associated with smaller eigenvalues are increasingly
oscillatory, reflecting the inability to reconstruct these modes due to diffusion-driven
loss of information. This is also the case for time-dependent sparse observations within
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the complex geometry of the model city. However, in this case, the oscillations in the
eigenvectors are not distributed evenly throughout the domain. They are focused on
sensor locations, beginning with a ball surrounding a single sensor as in Figure 3(c),
and becoming increasingly oscillatory and extending further upstream of the sensor,
as seen in Figure 3(d)–3(f). Note that the oscillations in the eigenvectors are not
uniform, likely due to the Neumann outflow boundary conditions and influence of
convection on the prior-preconditioned Hessian of the data misfit.2 These eigenvec-
tors represent regions of influence for the sensors; these regions affect how the prior
covariance matrix is modified in (5) to yield the posterior covariance estimate.

Similar to the final time observation case, information from observational data
lowers the eigenvalues of the sparse-observation posterior covariance matrix associated
with dominant eigenpairs of H̃misfit, thereby reducing the first 500 or so eigenvalues
in Figure 3(b). However, the reduction in uncertainty (i.e. the departure from the
horizontal line in the figure) is largest around the sensors themselves, as illustrated
by the eigenvector depicted in Figure 3(c).

5.2. Dependence of spectrum of H̃misfit on physical and experimental
parameters. While we argued in §3 that refining the mesh for a class of ill-posed
inverse problems does not affect the dominant eigenvalues/eigenvectors of the prior-
preconditioned Hessian of the data misfit, other factors do affect the rate of decay
of the spectrum and therefore the number of dominant eigenvalues required for the
approximation of Γpost. In this subsection, we study numerically the dependence
of the spectrum of H̃misfit = Γ1/2

priorA
TΓ−1

noiseAΓ1/2
prior on number of sensors, diffusion

coefficient, and final time.
In Figure 4(a), we examine the dependence of the spectrum on the number of

sensors for the sparse sensor case. As can be seen in the figure, as the number of
sensors increases, the eigenvalues decay less rapidly due to the information provided by
the additional sensors. Thus, more eigenpairs should be retained to maintain accuracy
of the approximation of H̃misfit. Table 5.2 presents the number of eigenvalues that
need to be retained for a given accuracy, and the work required to capture them. This
table demonstrates that the low-rank approximation presented in §3 permits solution
of the statistical inverse problem for very large numbers of parameters at very low cost.
For the case of 1,442,897 parameters, fewer than 0.1% of the eigenvalues are above
the cutoff of 0.1, and thus an inexpensive approximation of the posterior parameter
covariance can be readily made. For 27 sensors, 285 Hessian-vector products are
required to capture the dominant portion of the spectrum, which as mentioned in
§3 results in one forward/adjoint PDE solution per Hessian-vector product. This is
dramatically fewer than the full 1.4 million forward/adjoint PDE solves needed to form
the Hessian matrix, which would require years of supercomputing time. Note that
while the number of dominant eigenvalues appears to increase linearly with the number
of sensors, we cannot expect such a relationship in general. Here, the additional
sensors are providing independent information due to the sparse placement of the
sensors, while in general redundancy of sensor information may occur, permitting
fewer retained eigenvalues and eigenvectors.

Figure 4(b) depicts the effect of changes in the diffusion coefficient on the spec-
trum, for a problem with 114 sensors. Increased diffusion results in less information

2Recall that in the analysis of the 1D model problem of §4.2 with periodic boundary conditions,
convection in the forward and adjoint problems cancel each other, leading to the absence of convection
in the data misfit Hessian.
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Fig. 3. (a)–(b) Spectra of H̃misfit and the approximated posterior covariance for a sparse sensor
observation case with 51 sensors, final time T = 8, diffusion coefficient k = 0.05, βnoise/βprior = 100,

and a 64× 64× 64 mesh. Largest 1800 (out of 274,625) eigenvalues of H̃misfit, and corresponding

1800 eigenvalues Γpost are shown. (c)–(f) Isocontours of select eigenvectors of H̃misfit. Eigenvectors
51, 119, 185, and 359 are shown in (c), (d), (e), and (f), respectively. Red dots mark the locations
of the sensors.
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captured by sensor observations, and so the spectrum decays more quickly. Thus, a
lower rank approximation of H̃misfit can be used to estimate Γpost.

0 300 600 900 1200 1500 1800

10
−4

10
−2

10
0

10
2

λ
i
(H̃

m
is

f
it

)

 

 

27 sensors
51 sensors
114 sensors

(a)

0 300 600 900 1200 1500 1800

10
−4

10
−2

10
0

10
2

λ
i
(H̃

m
is

f
it

)
 

 

k = 0.05
k = 0.10
k = 0.15

(b)

Fig. 4. Dependence of spectrum of H̃misfit on sensor density and diffusion coefficient for the
sparse observations case with final time T = 8, βnoise/βprior = 100, and 274,625 initial concentration
parameters. (a) Dependence of spectrum on the number of sensors, for diffusion coefficient k = 0.05.
(b) Dependence of spectrum on the diffusion coefficient, for a problem with 114 sensors.

Number of sensors Number of eigenvalues Hessian-vector products
27 209 285
51 432 585
114 871 1130

Table 2
Influence of number of sensors on the work (in terms of Hessian-vector products) necessary

to compute a low-rank approximation of H̃misfit for an eigenvalue cutoff of λ > 0.1. Problem has
1,442,897 initial concentration parameters, diffusion coefficient k = 0.05, βnoise/βprior = 100, and
final time T = 8.

The final time T also affects the spectrum as shown in Figure 5. For the sparse
sensor case shown in Figure 5(a), measurements are taken at each timestep until the
final time T , so that an increase in T leads to an increase in information provided
by the sensors, thus requiring a larger number of retained eigenpairs in the low-rank
approximation. However, increasing the final time leads to diminishing returns, since
as the initial contaminant field is transported out of the domain, fewer and fewer
sensors provide information that can be used to infer the initial condition. Eventually,
a longer time window (0, T ) will yield no new information, and the resulting curves
in Figure 5(a) will tend toward each other. The diminishing returns are evident as
we move from T = 2 to 4 to 8 to 16 in this figure.

For the final time observation case presented in Figure 5(b), increasing T has an
opposite effect on the spectrum of H̃misfit, for two reasons. First, the longer we wait
to observe, the more information is lost to diffusion, (which damps modes in relation
to their wave number). Second, as T increases, more of the initial contaminant field is
transported out of the range of the sensors, so that the amount of information provided
by the sensors at final time T diminishes. These effects are evident in Figure 5(b).
Note that this final time observation case most closely resembles the analytic results
presented for the continuous 1D model problem in §4.2, although in that case the
periodic boundary conditions prevented information loss due to convection.
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Since a change in T affects all of the sensor data in the final time observation case,
while it affects only some of the data in the sparse observation case, the influence of T
on the spectrum is more pronounced in the former case, as can be seen by comparing
Figures 5(a) and 5(b).
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Fig. 5. Effects of changing the final time T on the spectrum of H̃misfit for the two sensor
observation scenarios, for a problem with k = 0.05, βnoise/βprior = 100, and 274,625 parameters.
(a) Sparse sensor observation case (with 27 sensors). (b) Final time observation case.

5.3. Interpretation of the posterior variance. The approximation of the
posterior covariance is given by (5). For the present example, the specific choice of
Γprior and Γnoise are given in §4.1 as scaled identities, leading to

Γpost ≈
h3

βprior
(I − V rDrV

T
r ).

Recall that V r and Dr represent the dominant eigenpairs of the prior-preconditioned
Hessian matrix of the data misfit, H̃misfit.

In Figure 6, we plot the approximate posterior variance of the initial concentration
field, which is given by the diagonal of Γpost, for the case of 51 sensors distributed
uniformly (avoiding the building interiors) throughout the model city. Figure 6(a)
presents a cross-section of the variance field, taken horizontally through the top row
of sensors. Recall that the prior estimate of the variance is h3/βprior, and the posterior
estimate modifies this value according to the expression (5). The bright red area is the
region of the domain where the prior dominates. Information gained from observations
does not reduce the uncertainty in the contaminant concentration in these regions.
The influence of the observations on the posterior variance is concentrated around the
sensors, as expected. The lowest uncertainty (dark blue) is exactly at the sensors, with
increasing uncertainty moving away from the sensor locations. A three-dimensional
view of the variance is given in Figure 6(b), which shows isocontours of the variance
in light blue in the context of the surrounding buildings, superposed on streamlines
of the velocity field. The isocontours capture the low uncertainty region surrounding
each sensor. Note that these low variance regions vary in shape. In the leeward
regions of buildings, where diffusion dominates, the low variance regions are more
isotropic. Where convection dominates, the low variance regions associated with
each sensor extend anisotropically upstream, following the streamlines of the velocity
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field. Contaminant that is initially directly upstream of a sensor is convected along
streamlines and measured by downstream sensors, thereby reducing uncertainty of
the reconstructed initial concentration in these upstream regions. On the other hand,
contaminants downstream of a sensor tend to experience greater diffusion as they
are convected a further distance before encountering a downstream sensor. Thus,
the stronger the convection, the longer the low variance tails. In low-velocity regions
where contaminants spread mainly through diffusion, however, the variance reduces
in a more isotropic fashion. The alignment of the anisotropy of the variance with
streamlines is evident in Figure 6.

(a) (b)

Fig. 6. The variance in the initial concentration of the contaminant, for the sparse observation
case of 51 sensors measuring to final time T = 8 with diffusion coefficient k = 0.03 for a 64×64×64
mesh. The covariance approximation is based on an eigenvalue cutoff of λ > 0.1, and required 513
eigenvalues out of 274,625, computed at a cost of 650 forward/adjoint convection-diffusion PDE
solutions. We chose βprior = h3/30 and βnoise = 100βprior. (a) Cross-section of the variance field
through the top row of sensors, with arrows representing the velocity field. (b) Top view, isocontours
of the variance field superposed on streamlines of the velocity field that are colored by magnitude.

5.4. Effect of low-rank approximation of H̃misfit on accuracy of variance
approximation. In this section, we study the effect of truncation of the spectrum,
and resulting low-rank approximation of H̃misfit, on the solution of the statistical
inverse problem, specifically the evaluation of the main diagonal of the posterior
covariance matrix, i.e. the variances of the initial concentration parameters. Figure 7
presents the relative error in the approximated variance as a function of the number of
eigenvectors retained. As can be seen in the figure, the relative error decreases rapidly
with the number of retained eigenvectors of H̃misfit. For both the sparse observation
case and the final time observation case, inclusion of additional eigenpairs in the
approximation of Γpost has diminishing returns with respect to increased accuracy.

These diminishing returns are also illustrated in Figure 8, which displays the ef-
fects of truncation on the approximate variance field (on a horizontal plane) for a
sparse observation case with 27 sensors. This is the same model city as the one used
to generate Figure 7(a). The sequence of three images in the figure show the improve-
ment in the approximation of the variance field as the number of retained eigenvectors
is increased corresponding to a eigenvalue cutoff of 5, 1, and 0.1. The differences are
most clearly visible in the increased length of the low variance tails (yellow/green)
upstream of the sensors. These are the regions for which the observations still pro-
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Fig. 7. Dependence of relative error in the approximated variance on the number of eigen-
values retained in the approximation. Since the dimension of H̃misfit is 274,625, computing
the exact variance at each grid point, Varexact

i , is prohibitive; instead, the “exact” solution is
defined using an aggressive eigenvalue cutoff of λ > 10−5. The relative error is defined byP

i |Varexact
i − Varapprox

i |/
P

i |Varexact
i |. (a) Relative error in the variance for a sparse observa-

tion case with 27 sensors, final time T = 16, βnoise/βprior = 100, and diffusion coefficient k = 0.05.

The “exact” variance retains 462 eigenpairs in the approximation of H̃misfit. (b) Relative error
in the variance for a final time observation case with final time T = 6 and diffusion coefficient
k = 0.05. The “exact” variance retains 3,240 eigenpairs.

vide some information (when filtered through the prior), before yielding to the red
areas, which are determined only by the prior. The lowest variance areas (in blue,
at the sensor locations) extend further for the smallest cutoff value. While the 59
additional eigenvectors used in the variance approximation of Figure 8(b) compared
to Figure 8(a) provide visible improvement, the additional 92 eigenvectors needed to
generate the approximate variance field in Figure 8(c) provide negligible returns in
accuracy.

(a) (b) (c)

Fig. 8. The variance in the initial concentration of the contaminant, based on three approxima-
tions to Γpost from different truncation cutoff values for a sparse observation case with 27 sensors,
final time T = 16, diffusion coefficient k = 0.05, and 274,625 parameters. (a) Cutoff λ > 5: 66
eigenvalues. (b) Cutoff λ > 1: 125 eigenvalues. (c) Cutoff λ > 0.1: 217 eigenvalues.

5.5. Dependence of the spectrum of H̃misfit on mesh size and resulting
scalability of the low-rank algorithm. This section addresses the two properties
required for scalability of the algorithm for low-rank-based approximation of the pos-
terior covariance that was presented in §3. First, the number of eigenvalues of H̃misfit

that materially influence the posterior covariance should be independent of mesh size.
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Second, the work to compute those eigenpairs, measured in number of forward/adjoint
solves of the 3D convection-diffusion PDE problems, should be independent of mesh
size. Figure 9(a) presents the dependence of the spectrum of H̃misfit on the mesh size,
which is the same as the size of the parameter space. The figure shows the eigenvalue
behavior for five successively finer mesh sizes, corresponding to a number of initial
condition parameters ranging from 117,649 to 1,442,897. As can be seen in the figure,
increasing the size of the parameter space does not affect the spectrum of H̃misfit

substantially, and therefore does not change appreciably the number of eigenvalues
required to approximate Γpost up to a chosen eigenvalue cutoff. Indeed, a log-linear
plot as in Figure 9(b) is needed to see the differences between the five spectra (note
that the figure shows only the largest 0.07% to 0.9% of eigenvalues, depending on
mesh size). In this figure, we see a small change in the spectrum as the mesh is
refined for the smallest eigenvalues displayed in the plot, which as discussed in §5.1
are associated with more oscillatory eigenvectors. Eigenvectors associated with larger
eigenvalues are smoother, and thus their corresponding eigenvalues are not affected
by mesh refinement. On the other hand, the more oscillatory eigenvectors associated
with smaller eigenvalues become better resolved with mesh refinement. The mesh
should be fine enough to capture the eigenpairs that have an appreciable influence on
the posterior covariance (and therefore should be retained in the low-rank approxi-
mation). The eigenvalue cutoff criterion provided in §3, namely that λ� 1, precisely
achieves this goal. Figure 10(a), which displays the number of eigenvalues of H̃misfit
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Fig. 9. Dependence of the spectrum of H̃misfit on mesh refinement for a final time observation

case with T = 6, βnoise/βprior = 100, and diffusion coefficient k = 0.05. (a) Eigenvalues of H̃misfit

such that λ > 0.1 for different mesh resolution. (b) Log-linear plot of eigenvalues of H̃misfit such
that λ > 0.1 for different mesh resolution.

above a cutoff of λ > 0.1 as a function of number of parameters (and hence mesh
size), demonstrates that the number of eigenvalues required to capture the dominant
portion of the spectrum of H̃misfit is independent of problem size, once the mesh is
sufficiently fine to resolve the important (as identified from the data, filtered through
the prior) eigenvectors.

The other property needed to insure scalability of our algorithm for low-rank esti-
mation of the posterior covariance is that the work required to capture the dominant
eigenvalues also does not depend on mesh size. Towards this end, we choose to extract
the dominant eigenvalues of H̃misfit using the Lanczos algorithm option in SLEPc.
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The main computational kernel in the Lanczos algorithm is to form a product of the
matrix H̃misfit with a vector. As discussed in §3, H̃misfit is never explicitly formed;
instead, each matrix-vector product is dominated by one forward and one adjoint
solve of the convection-diffusion PDE. The number of matrix-vector products is thus
a good measure of the cost of the low-rank approximation: solution of the forward
and adjoint PDEs overwhelms all other components, both in the eigenvalue computa-
tion and in the subsequent linear algebra to estimate the posterior covariance matrix.
These components are at most linear in the number of parameters (see Table 1 for
costs of the latter). Figure 10(b) depicts the number of matrix-vector products (and
therefore forward/adjoint PDE solves) to compute the retained eigenvalues shown in
Figure 10(a). The parameters again range in number from 117,649 to 1,442,897. As
can be seen, the number of required matrix-vector products is again largely indepen-
dent of parameter dimension. In summary, Figure 10(b) illustrates that the posterior
covariance matrix, and hence solution to the convection-diffusion statistical inverse
problem, can be estimated accurately at a cost (measured in PDE solves) that is
independent of problem size.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
5

800

850

900

950

1000

1050

1100

1150

1200

Number of parameters

N
um

be
r 

of
 E

ig
en

va
lu

es

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
5

1000

1100

1200

1300

1400

1500

1600

Number of parameters

M
at

rix
−

ve
ct

or
 p

ro
du

ct
s

(b)

Fig. 10. Work required to estimate dominant spectrum of H̃misfit as a function of mesh
size/number of parameters n, for a final time observation case with T = 6, βnoise/βprior = 100,

and diffusion coefficient k = 0.05. (a) Number r of eigenvalues of H̃misfit retained, such that
λ > 0.1. (b) Number of matrix-vector products (and hence forward/adjoint PDE solves) required to
compute eigenvalues of H̃misfit such that λ > 0.1.

6. Conclusions. We have presented a scalable method for quantifying uncer-
tainties in linear statistical inverse problems that are governed by expensive forward
models (such as PDEs) and high-dimensional parameter spaces (as arise from dis-
cretization of infinite-dimensional fields). We have considered the Bayesian framework
with Gaussian noise and prior, for which the solution to the inverse problem is also
Gaussian and thus characterized by the mean and covariance matrix of the posterior
probability density. For such problems, direct computation of the posterior covariance
matrix is prohibitive. For many ill-posed inverse problems, however, the Hessian of
the data misfit term has compact structure, which admits a low-rank approximation
with minimal error. For such problems, we present a fast method for computation
of an approximation to the covariance of the posterior that exploits the low-rank
structure of the prior-preconditioned Hessian of the data misfit H̃misfit. This per-
mits quantification of uncertainty in large-scale ill-posed inverse problems at a small
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multiple (independent of the problem dimension) of the cost of solving the forward
problem. Analysis of a 1D model convection-diffusion inverse problem and numerical
experiments with a large-scale 3D convection-diffusion inverse problem with up to 1.5
million parameters illustrate the scalability and accuracy of the method.

The work presented in this article addresses the class of inverse problems with
linear parameter-to-observable map and Gaussian prior and additive noise probability
densities. However, our method is more generally applicable to any posterior density
that is well-approximated by a Gaussian. In such cases, the Hessian of interest is the
Hessian evaluated at the MAP point, and the approach presented here applies directly.
For non-Gaussian posteriors, the (inverse of the) Hessian of the negative log posterior
(evaluated at the MAP point) is no longer equivalent to the posterior covariance
matrix. For high dimensional parameter spaces, one must then resort to sampling the
posterior for example by Markov chain Monte Carlo methods, either directly or by
first approximating the posterior by a Gaussian process surrogate. In these cases, the
method presented here may offer opportunities to substantially improve the speed and
effectiveness of MCMC as well as Gaussian process construction by incorporating an
approximation of the (local) prior-preconditioned Hessian of the data misfit. Results
demonstrating these ideas are forthcoming [13,14].
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[1] Volkan Akçelik, George Biros, Andrei Draganescu, Omar Ghattas, Judith Hill, and
Bart van Bloeman Waanders, Dynamic data-driven inversion for terascale simulations:
Real-time identification of airborne contaminants, in Proceedings of SC2005, Seattle, 2005.
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